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The fundamental concept of the theory of thermal analysis developed in this paper involves 
the movement of the transformation front in the mass of the sample. Equations are developed for 
the motion of the transformation front (in the case of invariant processes) for the simplest model 
of the thermoanalytical ceil. For a cylindrical sample, the equation is 

t = ~ ( ~ f ~ - r 2 1 n  R )  

where R is the external radius of the sample, H the thermal effect of the transformation, B the 
heating rate, D the density, 2 the thermal conductivity, r the position of the transformation front, 
and t time. 

The equation is experimentally confirmed by the finding that, as concluded from the equation, 
the height of the peak is directly proportional to the square root of the rate of sample heating. 

The various empirical and semi-empirical approaches to the relationship between 
the parameters of thermal curves, the properties of the sample being investigated 
and the experimental conditions allow the use of thermal analysis for the solution of 
many concrete problems. Frequently, these empirical approaches also permit the 
development of relatively simply analytical procedures and apparatuses for their 
implementation. However, in spite of the successes of empiricism, the task of the 
theoretical description of this relationship continues to be topical. 

Numerous attempts at a mathematical description of the course of the differential 
curve or of its individual elements [1-7] were based on contrasting the heat transfer 
to the sample investigated with that to an indifferent material. In this approach, the 
role of the indifferent material was placed at the same level as the role of the sample 
investigated. This approach, lhough formally logical, did not, however, allow 
detection of the motive forces acting in the system of thermophysical processes, or a 
mathematical description of the causal relationships of the changes observed in the 
system. 
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The unjustified importance of the indifferent material bore the consequence that 
in the mathematical equations describing the course of the differential record (or 
rather of its individual elements) parameters characterizing the indifferent material 
appeared. The growing number of variables required further equations, or increased 
the number of assumptions and simplifications. 

In our opinion, the indifferent material plays essentially only the role of some 
"value" calculated from the unknown in order to ensure the recording of this 
unknown in the measure required. It is, of course, desirable in all respects to know 
this calculated value: in the most favourable case a constant, or at least an 
accurately known function. The latter is particularly clearly expressed in 
thermoanalytical instruments (DTA-7), where instead of the signal taken from the 
indifferent material with a multitude of unknown and varying parameters, a signal 
with accurately controlled parameters is taken: 

T R = B T + T ~  

where T~ is the signal proportional to the temperature of the indifferent material, in 
K; B is the heating rate, in K/s; t is time, in s; and T~ is the signal proportional to the 
initial temperature, in K. 

dr 

i - - m  

R 

Fig. ! Motion of the transformation front in the sample 

Under such conditions it is particularly obvious that the course of the differential 
record is defined exclusively by the parameters of the substance investigated, and the 
task consists in the mathematical description of the phenomena depending on the 
sample itself. 

Let us consider the thermal phenomena taking place in the mass of the sample 
during the period of the transformation. As a basis we apply the concept of a 
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transformation front motion from the periphery to the centre of the sample, 
described and experimentally confirmed earlier [6, 8]. 

To simplify the calculations, some limiting conditions will be introduced: the 
sample is assumed to be an infinitely long cylinder with radius R; the surface layer of 
the sample is heated in the linear regime; an invariant process takes place in the 
sample, not changing its density (e.g. a polymorphic transformation). 

Let us consider the state of the sample at some moment t, when the 
transformation front formed earlier on the surface has shifted towards the interior 
and has radius r (Fig. 1). 

Let us establish the simplest heat balance equation for the infinitely small time 
interval dt. 

The general form of the amount of heat used for the transformation is 

Q = m . H  

where m is the mass of substance undergoing transformation during the time dr(r), 

and H is the specific heat effect of the transformation, in J/g. Also, 

m = V . d  

where Vis the volume of substance undergoing transformation (m 3) and d is its 
gravimetric density (g/m3). 

For the considered intermediate state (Fig. 1), one may write 

V = 2nrdrL 

i.e. 
QI = 2rcrdrHLd (1) 

The amount of heat absorbed by the sample is transferred to it from the exterior. 
The amount of heat transferred to the sample layer may be described by the 
equation of heat transfer [7]: 

Q2 = -~ Fx A Tdt  (2) 

where 2 is the termal conductivity of the material through which heat transfer takes 
place (J m - I K - 1  s-1), ~ is the thickness of the layer (m), and Fx for a cylindrical 
sample is 

Fex t - Fia t 2rr(R - r)L 
rx - - (3) 

In Fext In R_ 
Fin t r 

with F~xt for the external surface and F~at for the internal surface of heat transfer (m2), 
A Tbeing the temperature difference between the external and internal surfaces. 
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For the moment of time t 

i.e. 

6 = R -  r, and 
d T =  - B t  

2n2BtL(R - r) dt (4) 
Q2=  R 

ln-- 
r 

Assuming as a first approach that Q1 =Q2, one obtains from Eqs (1) and (5) 

2Bt 
rHd" dr - dt (5) 

In R 
r 

After separation of the variables and integration of Eq. (5), one finally obtains 

[ ' R 2 r  2 R )  
2Bt2 = Hd t 7 r21n (6) 

or 

-r= r'  In (7) 
t = x [  2B \ 2 

In an analogous manner one can obtain the equations for the transformation 
front motion within a sample mass of any sample shape, e.g. for spheres: 

I H d ( R 2 - r 2  2ra~ (7a) 
t=x/-  ~ \ T  + 3RJ 

for discs: 
[ Hd R2 t = ~/ -2-~( -2Rr  +r 2) (7b) 

Equation (7) may be considered the first equation obtained on the basis of the 
novel approach presented in this work to the mathematical description of thermal 
curves. This novel approach is founded on the concept of the frontal spreading of the 
transformation and the presence of the temperature gradient in the sample (gradient 
model). The experimental confirmation of Eq. (7) is undoubtedly of great interest. 

On the basis of Eq. (7), one may calculate the relative velocities of transformation 
front motion, depending on the position of the front between the centre of the 
sample and its external surface. For this purpose it is convenient to write Eq. (7) in 
the form 

t = R H/Hd / l - n 2  n 2 i n l  (8) 
[ 

V x -  
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o r  

t : k f ( n )  

where n is defined by the expression r = n" R (Fig. 1). 
The plot corresponding to Eq. (8) is presented in Fig. 2. It allows evaluation of the 

general character of the front radius change v e r s u s  the time interval passed since the 
moment when the transformation came into existence on the surface of the sample. 

3 

2 
2 

o 

0 , I ~ ] r k , I ~. 
2 ~ 6 8 

Time is 

Fig. 2 Velocity of  front motion in the sample 1 - -  for disc-shaped samples; 2 - -  for cylindrical samples; 

3 - -  for spherical samples 

The velocity of front motion within disc-shaped samples is constant (curve 1 in 
Fig. 2), while in cylindrical (curve 2) and to an even greater extent in spherical (curve 
3) samples, the velocity increases with the shift of the transformation front from the 
periphery towards the centre of the sample. 

To check the correctness of Eq. (7) experimentally by measuring the position of 
the transformation front at various intervals after the beginning of the 
transformation, as carried out earlier for purely qualitative objectives [6, 8], is 
obviously pointless, owing to the low accuracy of the results to be expected. Nor will 
the required accuracy for the experimental confirmation of Eq. (7) be attained by 
varying the values H, d or 2, since any change in these parameters will affect other 
parameters, among which the most undefined changes will occur in the thermal 
conductivity of the sample. 

The simplest way to confirm Eq. (7) experimentally is by means of some direct 
consequence of this equation. For instance, the peak height h, for an invariant 
transformation proceeding in a cylindrical sample is described by the equation 

hm = R / - ~ -  (9) 
~/ 2). 
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that is, the height of the peak of an invariant transformation in a cylindrical sample is 
equal to the radius of the sample, multiplied by the square root of the product of the 
density, the specific thermal effect of the transformation and the heating rate divided by 
twice the thermal conductivity. 

The most convenient procedure to utilize this consequence of Eq. (7) for its 
confirmation is to make use of the relationship peak height versus heating rate, since 
in this case the constancy of all other conditions can be satisfied for reversible 

~F~, K/S 

Fig. 3 Peak height vs. heating rate 1 - -  theoretical relationship based on Eq. (9); 2 - -  theoretical 

relationship based on the assumption of direct proportionality between peak height and heating 

rate; 3 - -  experimental curve 

invariant processes with practically ideal accuracy: the sample once placed into the 
apparatus can be submitted to repeated heating at differing heating rates, without 
changing an~ other experimental condition. 

The experiment was performed as described earlier [8]. The sample (potassium 
perchlorate powder) was placed in a thin-walled glass the tube (internal diam. 
3.2 mm). The space between the external surface of the test tube and the wall of the 
opening in the heating block was filled with metal powder, in order to ensure the 
condition that the temperature of the external surface of the sample increases 
linearly even during the time when the phase transformation takes place in the mass 
of the sample. 

Figure 3 presents the relationship peak height versus square root of heating rate. 
If Eq. (9) and consequently Eq. (7) are correct, the experimental data should be 

located on straight line 1. If the peak height is directly proportional to the heating 
rate, as is generally accepted in the literature [1, 9], and not to its square root as 
follows from Eq. (9), the experimental data should be located on curve 2. 

The Figure (experimental data: curve 3) fully confirms the correctness of Eq. (9). 
The slight deviation (which is, in fact, systematic) is obviously related to the 
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inaccuracy of the equation, insofar as it does not take into account the amount of 
heat used up for heating the external layers of the sample. 

All this allows formulation of the relationship found between the peak height and 
the heating rate in the following rule: The peak height is directly proportional to the 
square root of the heatin# rate. 

The above approach to the mathematical description of thermal curves, 
notwithstanding the fact that many assumptions are included, appears highly 
promising. 
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Zmamnmdassug  - -  Das in dieser Arbeit entwickelte grundlegende Konzept der Theorie der 
Thermischen Analyse schliel3t das Fortschreiten der Umwandlungsfront in der Probenmasse in sich ein. 
Gleichungen zur Beschreibung des Fortschreitens der Umwandlungsfront (im FaUe yon invarianten 
Prozessen) werden for das einfachste Modell der thermoanalytischen Zelle abgeleitet. Fiir eine 

zylindrische Probe gilt 

t ~ / 2 B \  2 

worin R den/iuBeren Radius der Probe, H den die Umwandlung begleitenden thermischen Effekt, B die 
Aufheizgeschwindigkeit, D die Dichte, 2 die Wfirmeleitf'~ihigkeit, r die Lage der Umwandlungsfront und t 
die Zeit bedeuten. Die Gleichung wird durch den experimentellen Befund bestfitigt, dab - -  was auch die 
Gleichung aussagt - -  die H6he des Peaks direkt proportional der Quadrat wurzel der Geschwindigkeit 
der Probenaufheizung ist. 

Pemmme - -  B OcnoBy paaaHBaemofi B pa6oTe Teopss TepM~qecroro ana.Jia3a noaoxeMbi npeacTaB- 
aerm• o ,utDRxemm dpponTanpeBpamenvIi B Macce o6paatta. ,/1.aa npocTefimefi mojle.rlIt TepioaltadlHTH- 
qeCKOfi gtlefiKH no.ayqema ypaBHemt~ ~tBMXeHHa dppouTa npeBpatuerm~t (B c.ayqae nHsapaanTHoro 
upouecca). 

J. Thermal Anal. 30, 1985 



6 5 6  E G U N O V :  Q U A N T I T A T I V E  T H E R M A L  A N A L Y S I S  VI .  

~ UHaHHJIpH~cCI(oro o6pa3 t t a  y p a a n e n l l e  ]tMeeT s~l~l 

IH'd(R2-r2 _r2.lnR), 

r~le R - -  n a p y x n b l ~  p a a r i y c  o 6 p a 3 u a ,  H - -  ren~oBof i  e t l ~ r l  ~ p e a p a m e m i a ,  B - -  cKopOCTh n a r p e a a ,  d 

- -  n~tOxaoc'rb, 2 - -  TeILrIOnpOBO,anOCTb, r - -  noao~xenne  qbponTa n p e a p a l a e n ~ a ,  t - -  apeM~. 

~2ana 3KCllepHMeHTa.rlbllSIi n p o n e p r a  IIOYlyqeHtlOFO y p a B n e n n a  n a  oCnoBannn  c:te~te'rBaa n3 Hero:  

BblCOTa IIHKa llpgMO-llpOI1OplltlottaJlbna KOpHIO gBa:~paTHOMy cKopoc'r l t  HaFI~Ba o6paa t t a .  
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